
coveralls-python
Release 3.0.0

Jul 20, 2021

Contents

1 Getting Started 3
1.1 Usage . 3
1.2 Configuration . 3
1.3 VCS Configuration . 6
1.4 Usage Within Tox . 6
1.5 Multiple Language Support . 8
1.6 Tips for .coveragerc . 9
1.7 Nosetests . 10
1.8 Troubleshooting . 10

2 About 11
2.1 Authors . 11

3 Administration 13
3.1 Release . 13

i

ii

coveralls-python, Release 3.0.0

coveralls.io is a service for publishing your coverage stats online. This package provides seamless integration with
coverage.py (and thus py.test, nosetests, etc. . .) in your Python projects.

Contents 1

https://coveralls.io/
https://coverage.readthedocs.io/en/latest/

coveralls-python, Release 3.0.0

2 Contents

CHAPTER 1

Getting Started

1.1 Usage

This package works with any CI environment. Special handling has been included for some CI service providers, but
coveralls-python can run anywhere.

To get started with coveralls-python, make sure to add your repo on the coveralls.io website. If you will be using
coveralls-python on TravisCI, you’re done here – otherwise, take note of the “repo token” in the coveralls.io dashboard.

After that, its as simple as installing coveralls-python, collecting coverage results, and sending them to coveralls.io.

For example:

pip install coveralls
coverage run --source=my_package setup.py test
COVERALLS_REPO_TOKEN=tGSdG5Qcd2dcQa2oQN9GlJkL50wFZPv1j coveralls

coveralls-python can be configured with several environment variables, as seen above. See Configuration for more
details.

1.2 Configuration

coveralls-python often works without any outside configuration by examining the environment it is being run in.
Special handling has been added for AppVeyor, BuildKite, CircleCI, Github Actions, Jenkins, and TravisCI to make
coveralls-python as close to “plug and play” as possible.

In cases where you do need to modify the configuration, we obey a very strict precedence order where the latest value
is used:

• first, the CI environment will be loaded

• second, any environment variables will be loaded (eg. those which begin with COVERALLS_

• third, the config file is loaded (eg. ./..coveralls.yml)

3

https://coveralls.io/repos/new

coveralls-python, Release 3.0.0

• finally, any command line flags are evaluated

Most often, you will simply need to run coveralls-python with no additional options after you have run your coverage
suite:

coveralls

If you have placed your .coveragerc in a non-standard location, you can run:

coveralls --rcfile=/path/to/coveragerc

If you would like to override the service name (auto-discovered on most CI systems, set to coveralls-python
otherwise):

coveralls --service=travis-pro
or, via env var:
COVERALLS_SERVICE_NAME=travis-pro coveralls

If you are interested in merging the coverage results between multiple languages/projects, see our multi-language
documentation.

If coveralls-python is being run on TravisCI or on GitHub Actions, it will automatically set the token for communica-
tion with coveralls.io. Otherwise, you should set the environment variable COVERALLS_REPO_TOKEN, which can
be found on the dashboard for your project in coveralls.io:

COVERALLS_REPO_TOKEN=mV2Jajb8y3c6AFlcVNagHO20fiZNkXPVy coveralls

If you are running multiple jobs in parallel and want coveralls.io to merge those results, you should set
COVERALLS_PARALLEL to true in your environment:

COVERALLS_PARALLEL=true coveralls

Later on, you can use coveralls --finish to let the Coveralls service know you have completed all your parallel
runs:

coveralls --finish

If you are using a non-public coveralls.io instance (for example: self-hosted Coveralls Enterprise), you can set
COVERALLS_HOST to the base URL of that insance:

COVERALLS_HOST="https://coveralls.aperture.com" coveralls

In that case, you may also be interested in disabling SSL verification:

COVERALLS_SKIP_SSL_VERIFY='1' coveralls

If you are using named jobs, you can set:

COVERALLS_FLAG_NAME="insert-name-here"

You can also set any of these values in a .coveralls.yml file in the root of your project repository. If you are
planning to use this method, please ensure you install coveralls[yaml] instead of just the base coveralls
package.

Sample .coveralls.yml file:

4 Chapter 1. Getting Started

coveralls-python, Release 3.0.0

service_name: travis-pro
repo_token: mV2Jajb8y3c6AFlcVNagHO20fiZNkXPVy
parallel: true
coveralls_host: https://coveralls.aperture.com

1.2.1 Github Actions support

Coveralls natively supports jobs running on Github Actions. You can directly pass the default-provided secret
GITHUB_TOKEN:

env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

run: |
coveralls

Passing a coveralls.io token via the COVERALLS_REPO_TOKEN environment variable (or via the repo_token
parameter in the config file) is not needed for Github Actions.

Sometimes Github Actions gets a little picky about the service name which needs to be used in various cases. If you
run into issues, try setting the COVERALLS_SERVICE_NAME explicitly to either github or github-actions.

For parallel builds, you have to add a final step to let coveralls.io know the parallel build is finished:

jobs:
test:
strategy:

matrix:
test-name:
- test1
- test2

runs-on: ubuntu-latest
steps:

- name: Checkout
uses: actions/checkout@v2

- name: Test
run: ./run_tests.sh ${{ matrix.test-name }}

- name: Upload coverage data to coveralls.io
run: coveralls
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
COVERALLS_FLAG_NAME: ${{ matrix.test-name }}
COVERALLS_PARALLEL: true

coveralls:
name: Indicate completion to coveralls.io
needs: test
runs-on: ubuntu-latest
container: python:3-slim
steps:
- name: Finished

run: |
pip3 install --upgrade coveralls
coveralls --finish

env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

The COVERALLS_FLAG_NAME environment variable (or the flag_name parameter in the config file) is optional
and can be used to better identify each job on coveralls.io. It does not need to be unique across the parallel jobs.

1.2. Configuration 5

coveralls-python, Release 3.0.0

1.3 VCS Configuration

coveralls-python supports git by default and will run the necessary git commands to collect the required
information without any intervention.

As describe in the coveralls docs, you may also configure these values by setting environment variables. These will be
used in the fallback case, eg. if git is not available or your project is not a git repository.

As described in the linked documentation, you can also use this method to support non- git projects:

GIT_ID=$(hg tip --template '{node}\n')
GIT_AUTHOR_NAME=$(hg tip --template '{author|person}\n')
GIT_AUTHOR_EMAIL=$(hg tip --template '{author|email}\n')
GIT_COMMITTER_NAME=$(hg tip --template '{author|person}\n')
GIT_COMMITTER_EMAIL=$(hg tip --template '{author|email}\n')
GIT_MESSAGE=$(hg tip --template '{desc}\n')
GIT_BRANCH=$(hg branch)

1.4 Usage Within Tox

Running coveralls-python from within a tox environment (v2.0 and above) requires an additional step; since coveralls-
python relies on environment variables to function, you’ll need to configure tox to capture those variables using the
passenv configuration option in your tox.ini.

For example, on TravisCI:

[tox]
envlist = py34,py35,py36,py37,py38

[testenv]
passenv = TRAVIS TRAVIS_*
deps =

coveralls
commands =

coverage run --source=yourpackagename setup.py test
coveralls

If you are configuring coveralls-python with environment variables, you should also pass those. See Configuration for
more details.

1.4.1 AppVeyor

passenv = APPVEYOR APPVEYOR_*

All variables:

• APPVEYOR

• APPVEYOR_BUILD_ID

• APPVEYOR_REPO_BRANCH

• APPVEYOR_PULL_REQUEST_NUMBER

6 Chapter 1. Getting Started

https://docs.coveralls.io/mercurial-support
https://tox.readthedocs.io/en/latest/

coveralls-python, Release 3.0.0

1.4.2 BuildKite

passenv = BUILDKITE BUILDKITE_*

All variables:

• BUILDKITE

• BUILDKITE_JOB_ID

• BUILDKITE_BRANCH

1.4.3 CircleCI

passenv = CIRCLECI CIRCLE_* CI_PULL_REQUEST

All variables:

• CIRCLECI

• CIRCLE_BUILD_NUM

• CIRCLE_BRANCH

• CI_PULL_REQUEST

1.4.4 Github Actions

passenv = GITHUB_*

All variables:

• GITHUB_ACTIONS

• GITHUB_REF

• GITHUB_SHA

• GITHUB_HEAD_REF

• GITHUB_REPOSITORY

• GITHUB_RUN_ID

• GITHUB_TOKEN

1.4.5 Jenkins

passenv = JENKINS_HOME BUILD_NUMBER GIT_BRANCH CI_PULL_REQUEST

All variables:

• JENKINS_HOME

• BUILD_NUMBER

• GIT_BRANCH

• CI_PULL_REQUEST

1.4. Usage Within Tox 7

coveralls-python, Release 3.0.0

1.4.6 TravisCI

passenv = TRAVIS TRAVIS_*

All variables:

• TRAVIS

• TRAVIS_JOB_ID

• TRAVIS_BRANCH

• TRAVIS_PULL_REQUEST

1.4.7 SemaphoreCI

Classic

passenv = SEMAPHORE SEMAPHORE_EXECUTABLE_UUID SEMAPHORE_JOB_UUID SEMAPHORE_BRANCH_ID
→˓BRANCH_NAME

All variables:

• SEMAPHORE

• SEMAPHORE_EXECUTABLE_UUID

• SEMAPHORE_JOB_UUID

• SEMAPHORE_BRANCH_ID

• BRANCH_NAME

2.0

passenv = SEMAPHORE SEMAPHORE_WORKFLOW_ID SEMAPHORE_JOB_ID SEMAPHORE_GIT_PR_NUMBER
→˓BRANCH_NAME

All variables:

• SEMAPHORE

• SEMAPHORE_WORKFLOW_ID

• SEMAPHORE_JOB_ID

• SEMAPHORE_GIT_PR_NUMBER

• BRANCH_NAME

1.5 Multiple Language Support

Tracking multi-language repo coverage requires an extra setup of merging coverage data for submission.

To send coveralls.io merged data, you must use each of your coverage reporting tools in sequence, then merge the
JSON data in the last step.

8 Chapter 1. Getting Started

coveralls-python, Release 3.0.0

For example, to submit coverage for a project using both mocha and py.test, you could use the coveralls-lcov
library and run:

generate mocha coverage data
mocha --reporter mocha-lcov-reporter */tests/static/js/* > coverage.info

convert data with coveralls-lcov
coveralls-lcov -v -n coverage.info > coverage.json

merge mocha coverage with python coverage and send to coveralls
coveralls --merge=coverage.json

If you want to use this library to create a JSON blob for usage elsewhere, you can run:

coveralls --output=coverage.json

1.5.1 Technical Details

The JSON file to be merged must be of “coveralls-style” and contain thus a source_files key. The Coveralls API
has more information.

1.6 Tips for .coveragerc

This section is a list of most common options for coverage.py, which collects all the coverage information. Cov-
eralls is populated from this data, so it’s good to know how to to configure coverage.py.

To limit the report to only your packages, specify their names (or directories):

[run]
source = pkgname,your_otherpackage

To exclude parts of your source from coverage, for example migrations folders:

[report]
omit = */migrations/*

Some lines are never executed in your tests, but that can be ok. To mark those lines use inline comments right in your
source code:

if debug: # pragma: no cover
msg = "blah blah"
log_message(msg, a)

Sometimes it can be tedious to mark them in code, so you can specify whole lines in .coveragerc:

[report]
exclude_lines =

pragma: no cover
def __repr__
raise AssertionError
raise NotImplementedError
if __name__ == .__main__.:

Finally, if you’re using non-default configuration file, you can specify it in the coveralls command:

1.6. Tips for .coveragerc 9

https://github.com/okkez/coveralls-lcov
https://docs.coveralls.io/api-introduction
http://coverage.readthedocs.io/en/latest/config.html
http://coverage.readthedocs.io/en/latest/source.html
http://coverage.readthedocs.io/en/latest/excluding.html

coveralls-python, Release 3.0.0

$ coveralls --rcfile=<file>

1.7 Nosetests

Nosetests provide a plugin for coverage measurement of your code:

$ nosetests --with-coverage --cover-package=<your_package_name>

However, nosetests gathers coverage for all executed code, ignoring the source config option in .coveragerc.

This well make coveralls report unnecessary files, which can be inconvenient. To workaround this issue, you can
use the omit option in your .coveragerc to specify a list of filename patterns to leave out of reporting.

For example:

[report]
omit =

/venv/
*/my_project/ignorable_file.py

*/test_script.py

Note, that native coverage.py and py.test are not affected by this problem and do not require this workaround.

1.8 Troubleshooting

If you are having difficulties submitting your coverage to coveralls.io, debug mode may help you figure out the prob-
lem:

$ coveralls debug

Debug mode doesn’t send anything, it just outputs prepared json and reported files list to stdout.

We also have an issue tracker on GitHub.

10 Chapter 1. Getting Started

http://nose.readthedocs.org/en/latest/plugins/cover.html
https://github.com/coveralls-clients/coveralls-python/issues

CHAPTER 2

About

2.1 Authors

Coveralls is written and maintained by various contributors, without whom none of this would be possible. For a full
list, see GitHub.

Special thanks goes to the original maintainer, Ilya Baryshev.

11

https://github.com/coveralls-clients/coveralls-python/graphs/contributors

coveralls-python, Release 3.0.0

12 Chapter 2. About

CHAPTER 3

Administration

3.1 Release

This project is released on PyPI as coveralls.

To cut a new release, ensure the latest master passes all tests. Then, create a release commit:

1. Update the CHANGELOG.md with the new version (clog -C CHANGELOG.md -F --setversion x.
y.z).

2. Bump the version number in version.py.

3. Commit and push (git commit -am 'chore(release): bump version' && git push)

4. Tag that commit with the version number (git tag x.y.z).

5. Push the new tag to GitHub.

6. Create a new GitHub release.

To create a new PyPI release, do the following:

1. Build the sources (python setup.py sdist bdist_wheel).

2. Register & upload the sources. (twine upload $PWD/dist/*).

Conda should automatically create a PR on their coveralls-feedstock shortly with the updated version – if something
goes wrong, the manual process would be to:

1. Fork coveralls-feedstock.

2. Update recipe/meta.yaml with the new version number and sha.

3. Create a PR.

4. Comment on your own PR with: “@conda-forge-admin, please rerender”.

5. Merge along with the automated commit from Conda.

13

https://pypi.org/project/coveralls/
https://github.com/coveralls-clients/coveralls-python/releases/new
https://github.com/conda-forge/coveralls-feedstock
https://github.com/conda-forge/coveralls-feedstock
https://pypi.org/project/coveralls/#files

	Getting Started
	Usage
	Configuration
	VCS Configuration
	Usage Within Tox
	Multiple Language Support
	Tips for .coveragerc
	Nosetests
	Troubleshooting

	About
	Authors

	Administration
	Release

